

Arbeitsblätter zum Ausdrucken von sofatutor.com

Arten von Wärmekraftmaschinen

(1)	Nenne die technischen Wirkungsgrade verschiedener Wärmekraftmaschinen.
2	Beschreibe den Carnot'schen Kreisprozess.
3	Nenne die Formel zur Berechnung des thermischen Wirkungsgrades im Carnot'schen Kreisprozess.
4	Erkläre den Unterschied zwischen thermischen und technischen Wirkungsgraden.
5	Erkläre, warum ein Wirkungsgrad immer kleiner als eins ist.
6	Erkläre den Carnot'schen Kreisprozess.
+	mit vielen Tipps, Lösungsschlüsseln und Lösungswegen zu allen Aufgaben

Das komplette Paket, inkl. aller Aufgaben, Tipps, Lösungen und Lösungswege

Nenne die technischen Wirkungsgrade verschiedener Wärmekraftmaschinen.

Verbinde die Wärmekraftmaschinen mit den passenden technischen Wirkungsgraden.

Dampfpumpe	-A -	-0-	$oxed{m{\eta}_{ech} < 35~\%}$
Kolbendampfmaschine	-B -	-2	$oxed{m{\eta_{ech} < 30~\%}}$
Dampflokomotive	--	-3-	$oldsymbol{\eta_{ech}=0,1-0,5~\%}$
Heißluftmotor	-0-	-4-	$\boxed{ ~ oldsymbol{\eta_{ech}} < 40~\% }$
Ottomotor	-G -	-6	$oldsymbol{\eta_{ech}=8-10~\%}$
Dieselmotor	-G -	-6-	$oldsymbol{\eta_{ech}=0,5-3~\%}$

Unsere Tipps für die Aufgaben

Nenne die technischen Wirkungsgrade verschiedener Wärmekraftmaschinen.

1. Tipp

Dampfmaschinen haben einen eher geringen technischen Wirkungsgrad. Die Dampfpumpe, die Kolbendampfmaschine und auch die Dampflokomotive sind Dampfmaschinen. Dabei haben die zuerst entwickelten Dampfmaschinen in der Regel einen geringeren Wirkungsgrad.

2. Tipp

Der Heißluftmotor könnte in der Zukunft wieder interessant werden. Warum und welchen Wirkungsgrad könnte er dann haben?

3. Tipp

Die technischen Wirkungsgrade von Otto- und Dieselmotor sind aus der Automobilbranche gut bekannt. Hierbei hat der Dieselmotor einen höheren technischen Wirkungsgrad. Sind die Wirkungsgrade vermutlich eher hoch oder eher gering?

Lösungen und Lösungswege für die Aufgaben

Nenne die technischen Wirkungsgrade verschiedener Wärmekraftmaschinen.

Lösungsschlüssel: A—3 // B—6 // C—5 // D—1 // E—2 // F—4

Dampfmaschinen haben den geringsten technischen Wirkungsgrad.

Die **Dampfpumpe**, die **Kolbendampfmaschine** und auch die **Dampflokomotive** sind Dampfmaschinen. Dabei haben die *zuerst entwickelten* Dampfmaschinen in der Regel einen *geringeren Wirkungsgrad*. Währen sich die Dampfpumpe noch im Promille-Bereich bewegt, konnte *Watt* mit seiner *Kolbendampfmaschine* schon technische Wirkungsgrade von ungefähr 3% erreichen. Gute Dampflokomotiven, auch Dampfmaschinen, kommen schon deutlich darüber hinaus.

Dennoch ist der *Wirkungsgrad* zu gering, um in unserer jetzigen Zeit noch sinnvoll genutzt zu werden.

Der **Heißluftmotor** hat dagegen schon einen deutlich höheren Wirkungsgrad. Diese Anwendung könnte deswegen in naher Gegenwart wieder interessant werden.

Die technischen Wirkungsgrade von **Verbrennungskraftmaschinen** sind wegen ihrer häufigen Anwendung in unser aktuellen Zeit recht genau bekannt.

Dabei kommt der **Dieselmotor** am besten weg. Er hat von den genannten *Wärmekraftmaschinen* den höchsten Wirkungsgrad.

