

Printable Worksheets from sofatutor.com

Nature of Solutions of a System of Linear Equations

2 Explain how to find the solution to the system of equations.

3 Find the graph which corresponds to the system of equations.

4 Determine which systems of equations have one, infinitely many, or no solutions.

Graph the system of equations and find the solution(s), if any exist.

6 Find the solution(s), if any exist, to the system of equations.

+ with lots of tips, answer keys, and detailed answer explanations for all of the problems.

The complete package, **including all problems**, **hints**, **answers**, **and detailed answer explanations** is available for all sofatutor.com subscribers.

Identify which statements are true.

Choose the correct statements.

Mathematics / Middle School / Linear Equations / Systems of Linear Equations and Their Solutions/ Nature of Solutions of a System of Linear Equations

Hints for solving these problems

Identify which statements are true.

Hint #1

Here you see two lines with different slopes and different yintercepts.

Hint #2

Any two given lines have either one point, no points or infinitely many points in common.

Answers and detailed answer explanations for these problems

Identify which statements are true.

Answer key: A, C, D, E

The type of solutions to systems of linear equations depends on the slope as well as the y-intercept of the equations:

Let's have two equations

$$y=m_1x+b_1$$
and

$$y = m_2 x + b_2$$

First let's have a look at the slope of the lines:

- $m_1
 eq m_2$ —the lines have **one point** in common independently on the y-intercept.
- $m_1 = m_2$

Here we can differentiate between two cases:

- $b_1 = b_2$ othe lines are identical and thus have **infinitely many points** in common.
- ullet $b_1
 eq b_2 o$ the lines are parallel and never meet. They have ullet no points in common.

